Magyar kutatók dolgoznak a jövő repülőgépeinek fejlesztésén

v.l.n.r.: Daniel Teubl, Christian Rößler und Sebastian Köberle transportieren den Flugdemonstrator vom Flugvorfeld zur Startbahn. Im Rahmen des europäischen Forschungsprojekts FLEXOP (Flutter Free FLight Envelope eXpansion for ecOnomical Performance improvement) sollen neue Methoden zum Entwurf von aktiven und passiven Systemen zur Flatterdämpfung von sehr leichten und damit flexiblen Flügelstrukturen entwickelt und validiert werden.Unter dem Schirm des Forschungs- und Innovationsprogramms Horizon2020 der Europäischen Union arbeiten Partner aus Industrie und Forschung aus 6 verschiedenen Ländern an Regelalgorithmen, Aktuatoren, Entwurfsoptimierung, sowie an einem unbemannten Flugdemonstrator mit 7m Spannweite und Turbinenantrieb, an dem die gefundenen Ansätze erprobt werden sollen.
ENGLISH VERSION: f.l.t.r.: Daniel Teubl, Christian Rößler und Sebastian Köberle. Transport of the demonstrator from the DLR apron to the runway. The European research project FLEXOP (Flutter Free FLight Envelope eXpansion for EcOnomical Performance improvement) aims to develop and validate new methods for designing active and passive systems for flutter suppression of very light and thus flexible wing structures. Under the guidance of the Horizon2020 research and innovation program, partners from industry and academia from 6 different countries are working on control algorithms, actuators, design optimization as well as an unmanned flying demonstrator with 7m wingspan and engine propuslion, in which the found approaches will be tested.
Foto: Fabian Vogl /TUM; Verwendung frei für die Berichterstattung über die TUM bei Nennung des Copyrights /Free for use in reporting on TUM, with the copyright noted

Néhány évtizede a repülés még ritka luxus volt, mára viszont sokunk életének természetes része. Nyári vakáció, pár napos városnézés, üzleti út: a világ bármelyik pontja elérhető néhány óra alatt. Ugyanígy a légi csomagszállítás is mindennapjaink része lett, az online rendelések globális hálózatától a sürgős ipari szállítmányokig. A növekvő légi forgalom azonban nemcsak a repülőtereket, hanem a bolygónkat is terheli. Ezért vált kulcskérdéssé, hogyan tehetjük a repülést egyszerre zöldebbé, gazdaságosabbá és biztonságosabbá – még a legzordabb időjárásban is. Ezen dolgoznak hazai kutatók a világ legnagyobb repülőgépgyártóival vállvetve.

A HUN-REN SZTAKI Rendszer- és Irányításelméleti Kutatólaboratóriumának (SZTAKI SCL) szakemberei többek közt az Airbusszal dolgoznak együtt a légi teher- és személyszállítás hatékonyabbá tételén. Az alacsonyabb fogyasztású és kisebb károsanyag-kibocsátású repülőgépek a gazdasági előnyök mellett a légiközlekedés ökológiai lábnyomát is csökkentik, sőt, a fejlesztések révén turbulens időjárás esetén is biztonságosabban repülnek.

A manapság elterjedt repülőgép tervezési elvekkel nem szakítva, pusztán a rendszerek szorosabb együttműködésének optimalizálásával mintegy 10–15 százalékos üzemanyag-megtakarítást sikerült elérni az elmúlt időszakban. Ennek egyik alapvető módja a repülőgépek szerkezeti hatékonyságának növelése, a gép aerodinamikai tulajdonságainak javítása. Ez azt jelenti, hogy minél kisebb legyen a légellenállása, miközben a szárnyai a lehető legtöbb felhajtóerőt adják a legkevesebb üzemanyag-felhasználással.

Az Airbus kutató részlege már a 2035-re sorozatgyártásra kész gépek technológiáin dolgozik. A fejlesztések egyik célja, hogy aerodinamikai szempontból minél hatékonyabb, nagy karcsúságú szárnyakat hozzanak létre. A fesztávot viszont nem lehet akárhogyan növelni: ha túl vaskos a szárny, akkor nő a légellenállás és még a repülési stabilitás is csökkenhet. A hosszú és vékony szárnyak ugyanakkor jelentősen javíthatnak a gép aerodinamikai tulajdonságain – és az ezekkel kapcsolatos technológiai kihívások megoldásában éppen a SZTAKI SCL kutatásai segítenek.

Kísérleteznek olyan repülőgépekkel is, amelyek úgynevezett csupaszárny kialakításúak. Ezek elterjedése akár további 20–25%-os üzemanyagmegtakarítást is eredményezhetne, ugyanakkor számos új kérdést is felvetnek: sok reptér csak jelentős átalakításokkal lenne alkalmas az ilyen gépek fogadására, illetve az utasok kényelmes elhelyezése is gondot okozna. Emellett a vizsgálatok szerint sokan tartanak az ismeretlen, nem hagyományos formáktól. Az utasok bizalma pedig kulcskérdés: a gyártók és légitársaságok számára komoly kockázat lenne olyan nagy értékű repülőgépeket szolgálatba állítani, amelyekre az utazók egy része egyszerűen félne felszállni.

Flatterjelenség és aeroelaszticitás

„A hosszabb és vékonyabb szárnyak hajlamosabbak a rezonanciára, vagyis arra, hogy bizonyos körülmények között a kisebb rezgések felerősödjenek, és egyre nagyobb kilengést okozzanak. A repülőgép szárnyai esetében ezt flatterjelenségnek hívják. A nagy frekvenciájú, nem szabályozott rezgés pedig súlyos szerkezeti problémákhoz vezethet, sőt, a szárny akár el is törhet – magyarázza Vanek Bálint, a SZTAKI SCL vezetőhelyettese. – Ráadásul egyes repterek nem tudnak bizonyos szárnyfesztávolság fölötti gépeket fogadni. Ilyen esetekben a szárnyvégek felhajtására van szükség, ami egyrészt növeli a szárny tömegét, másrészt további feladatot jelent a pilóta – adott esetben a robotpilóta – számára.”

A SZTAKI SCL egyik fő szakterülete éppen a szárnyak repülés közbeni rezgésének modellezése és csillapítása. A labor az aeroelaszticitással foglalkozik – azzal, hogyan hat egymásra a levegő áramlása és a repülőgépszárnyak rugalmas szerkezete. „A repülési tesztek egy része csak szimulációban valósítható meg, ezért matematikai modellek segítségével elemezzük a szárnyak viselkedését turbulencia, széllökések és egyéb extrém körülmények esetén. A modellek alapján tervezzük meg azokat az algoritmusokat, amelyekkel majd a robotpilóta szoftver képes a szárny viselkedését aktívan szabályozni” – tette hozzá Vanek Bálint.

A SZTAKI SCL emellett olyan apró, gyors működésű szárnyfelületeket is fejleszt, amelyek aerodinamikai módon képesek a repülés közben jelentkező veszélyes szárnyrezgés gyors kioltására. Az Európai Unió kutatás-fejlesztési keretprogramja, a Horizon2020 keretében az Airbusszal karöltve készítették el azokat a szárnyfelületet mozgató speciális aktuátorokat, amelyeket a sugárhajtású Falcon magánrepülőgépeket gyártó francia Dassault is használ.